Sag mal, kennst Du eigentlich die Definition von \(f(n)\in{\mathcal O}(g(n))\)? Es soll eine Konstante \(C\) geben, sodass \(f(n)\le Cg(n)\) fuer fast alle \(n\) gilt.
Nun unterscheiden sich bekanntlich Logarithmen zu verschiedenen Basen nur um einen konstanten Faktor, d.h. es gibt sogar ein \(C\) mit \(\log_2n=C\log_{10}n\) fuer alle \(n\). Also \(\log_2n\in{\mathcal O}(\log_{10}n)\) und ganz analog \(\log_{10}n\in{\mathcal O}(\log_2n)\).
Zum zweiten Teil: Wenn \(10^n\in{\mathcal O}(2^n)\) sein sollte, dann muesste es ein \(C\) mit \(10^n\le C\cdot2^n\) fuer fast alle \(n\) geben. Das bedeutet aber \(5^n\le C\) fuer fast alle \(n\). Ein solchges \(C\) kann es nicht geben, denn \(5^n\) ist unbeschraenkt.