+1 Daumen
1,8k Aufrufe

Wie vorhin gewünscht habe ich die Lösungen elektronisch erfasst. :)

Ich möchte fragen, ob ich die folgenden Aufgaben korrekt gelöst habe. Es handelt sich um aussagenlogische Formeln. Ich bin da noch nicht so sehr sattelfest, daher bitte ich euch mir zu sagen, ob ich richtig liege. :-)

Aufgrund der recht beträchtlichen Anzahl an Übungen müsst ihr nicht alles anschauen, Aufgabe 3 und 4 wären mir am Wichtigsten.

Meine Lösungen sind in rot.

Aufgabe 1
Gegeben sind die beiden aussagenlogischen Formeln

F := p1 → (p2 ∧ p5) und G :=(p3 ∧ p2) → p4

sowie eine Belegung B mit B(pn) = 1 wenn n eine Primzahl ist und 0 für sonst.


(a) Berechnen Sie B(F) und B(G).

B(F) = 1, B(G) = 0
(b) Geben Sie zwei verschiedene Belegungen an, unter denen F zu 0 und G zu 1
evaluiert wird.

für F: B(pn) = 1 wenn n eine ungerade Zahl ist und 0 wenn n eine gerade Zahl ist

für G: B(pn) = 1 wenn n eine gerade Zahl ist und 0 wenn n eine ungerade Zahl ist


Aufgabe 2
Geben Sie von folgenden Formeln an, ob sie in DNF und/oder in KNF sind.
(a) p

DNF und KNF
(b) p ∧ (¬q ∧ p1)

DNF
(c) p ∨ (q → p)

KNF
(d) p ∨ ¬p

DNF und KNF
(e) (p ∨ q) ∧ (p ∨ p ∨ p)

KNF


Aufgabe 3
Bringen Sie folgende aussagenlogischen Formeln in DNF und KNF.
(a) p → (q ∨ (p1 ∧ p2))

¬ p ∨ (q ∨ p1) ∧ (q ∨ p2) KNF

¬ p ∨ (q ∧ q) ∨ (p1 ∧ q) ∨ ((q ∧ p2) ∨ (p1 ∧ p2)) DNF
(b) p → (q → p1)

(¬ p ∨ q) ∧ (¬p ∨ ¬p1) KNF

((¬ p ¬ p) (q ¬p)) ∨ ((¬ p  ¬ p1) ∨ (q  ¬ p1)) DNF
(c) (p → q) → p1

(p∧ q) ∨p1 DNF

(p ∨p1)∧ (q∨ p1) KNF


Aufgabe 4
Zeigen Sie, dass die aussagenlogische Formel F genau dann unerfüllbar ist, wenn die
Formel ¬F allgemeingültig ist.

F unerfüllbar genau dann wenn ¬F allgemeingültig

∀B(B(F) = 0) → ∀B(¬F) = 1

∀B(B(¬F) = 1) → ∀B(1-B(F) = 1)


Aufgabe 5
Bestimmen Sie mithilfe von Wahrheitstabellen ob folgende Formeln allgemeingültig,
erfüllbar oder unerfüllbar sind.
(a) p → (q → p)

allgemeingültig
(b) (p → q) → (¬q → ¬p)

allgemeingültig
(c) (p → q) → (q → p)

erfüllbar
(d) (p → q) ∧ (p ∧ ¬q)

unerfüllbar

Avatar von

2 Antworten

0 Daumen
Aufgabe 5 kann man bei WolframAlpha so eingeben.

http://www.wolframalpha.com/input/?i=p+implies+%28q+implies+p%29

a) stimmt somit.

Bei 3a) ist meine Eingabe

http://www.wolframalpha.com/input/?i=p+implies+%28q+∨+%28r+AND+s%29%29++

Vielleicht findest du bei den Antworten zu den ähnlichen Fragen unten eine Möglichkeit den Rest zu prüfen. Eingabe von Aufgabe 4 bei WolframAlpha gelingt mir derzeit nicht.
Avatar von
Besten Dank, auch für den Wolfram Tipp. Hab' ich glattwegs vergessen, dass Wolfram ganz nützlich sein kann. :)
Bitte gern geschehen!

Falls du den Rest auch noch bei Wolfram reinbringst, würde mich interessieren, wie.
0 Daumen

Deine Ergebnisse sollten passen. Notfalls mit WA nochmal nachrechnen lassen.

Avatar von

Wie gibt man 4. bei WA genau ein?

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Stacklounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community